23rd Annual Pain Medicine Meeting November 21-23, 2024 | Las Vegas, Nevada #ASRAFALL24

Abstract: 6250

Scientific Abstracts > Chronic Pain

Differential Target Multiplexed Spinal Cord Stimulation: A UK Cost-Effectiveness Analysis

ASHISH GULVE, Vivek Mehta, David Provenzano, Simon Eggington, Shanti Scheffler, Nicolas Gasquet, Christine Ricker

The James Cook University Hospital

Introduction

Chronic low back pain (CLBP) is the leading cause of years lived with disability worldwide and affects > 7.5% of the global population.

Spinal cord stimulation (SCS) therapy is a long-established treatment for CLBP, providing significant benefits and treatment satisfaction compared to conventional medical management (CMM).

Differential target multiplexed (DTM)-SCS is a recent development in therapy, which uses multiplexed electrical pulses to target the modulation of glial cells and neurons.

UK NICE cost-effectiveness analysis is out of date and does not consider this newer form of therapy. This work therefore expands the NICE model by assessing the cost-effectiveness of DTM in comparison to CMM and conventional (C)-SCS.

Materials and Methods

The model compared three treatment options, DTM-SCS, C-SCS and CMM.

Costs were based upon UK NHS data, and model inputs derived from published literature and deidentified sources. A single SCS system was modelled for both C-SCS and DTM-SCS cohorts, with SCS groups continuing to receive CMM.

A 12-month decision tree phase followed by a Markov model to 15-year follow-up was used, with three-month cycles.

Optimal pain relief was defined as ≥50% improvement in VAS back pain. Costs and quality-adjusted life-years (QALYs) were calculated over the 15-year period, using deterministic and one-way sensitivity analyses, and probabilistic sensitivity analyses performed to explore the effect of the joint uncertainty in all model inputs.

The full-text article of this project has been accepted and is in print in the Neuromodulation: Technology at the Neural Interface.

Results/Case Report

After the discounted mean costs, QALYs, and life-years associated with each treatment group were calculated over a 15-year time horizon, the ICER for each pairwise comparison was £10,111 per QALY gained for C-SCS vs CMM (incremental net benefit [INB] = £8551); £6101 per QALY for DTM-SCS vs CMM (INB = £21,281); and £897 per QALY for DTM-SCS vs C-SCS (INB = £12,730).

Discussion

The results demonstrate that, over a 15-year follow-up period, DTM-SCS is cost-effective for treating patients with LBP from both payer and societal perspectives. While both DTM-SCS and C-SCS are cost-effective compared to CMM in the long term, DTM-SCS achieved a lower ICER than C-SCS. These findings advocate for the broader adoption of DTM-SCS in the UK healthcare system for managing CLBP.

References

1. Wu A, March L, Zheng X, et al. Global low back pain prevalence and years lived with disability from 1990 to 2017: estimates from the Global Burden of Disease Study 2017. Ann Transl Med. 2020;8:299.

2. GBD 2021 Low Back Pain Collaborators. Global, regional, and national burden of low back pain, 1990-2020, its attributable risk factors, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023;5:e316-e329.

3. Chen L, Ferreira ML, Nassar N, et al. Association of chronic musculoskeletal pain with mortality among UK adults: a population-based cohort study with mediation analysis. EClinicalmedicine. 2021;42:101202.

4. Taylor RS. Epidemiology of refractory neuropathic pain. Pain Pract. 2006;6:22–26. https://doi.org/10.1111/j.1533-2500.2006.00054.x.

5. Kumar K, Taylor RS, Jacques L, et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain. 2007;132:179–188.

6. Taylor RS, Ryan J, O'Donnell R, Eldabe S, Kumar K, North RB. The cost-effectiveness of spinal cord stimulation in the treatment of failed back surgery syndrome. Clin J Pain. 2010;26:463–469.

7. Fishman M, Cordner H, Justiz R, et al. Twelve-month results from multicenter,

open-label, randomized controlled clinical trial comparing differential target

multiplexed spinal cord stimulation and traditional spinal cord stimulation in

subjects with chronic intractable back pain and leg pain. Pain Pract. 2021;21:912-923.

8. Medtech innovation briefing: differential target multiplexed spinal cord stimulation

for chronic lower back and leg pain. National Institute for Health and Care Excellence;

2022. Accessed August 31, 2023. http://www.nice.org.uk/guidance/mib305

9. Process and methods: NICE health technology evaluations: the manual. National Institute for Health and Care Excellence; 2022. Accessed August 31, 2023. https://www.

nice.org.uk/process/pmg36/chapter/introduction-to-health-technology-evaluation

10. Van Buyten JP, Wille F, Smet I, et al. Therapy-Related Explants After Spinal Cord

Stimulation: Results of an International Retrospective Chart Review Study. Neuromodulation. 2017;20:642–649.

11. National Health Service England. National tariff system 2021-2022. Accessed May 25, 2023. https://www.england.nhs.uk/wp-content/uploads/2020/11/21-22-National-tariff-payment-system.pdf

12. Jones KC, Burns A. Unit costs of health and social care 2021. Unit Costs of Health and Social Care. Kent, UK: Personal Social Services Research Unit; 2021.

13. Weir S, Samnaliev M, Kuo TC, et al. The incidence and healthcare costs of persistent postoperative pain following lumbar spine surgery in the UK: a cohort study using

the Clinical Practice Research Datalink (CPRD) and Hospital Episode Statistics (HES).

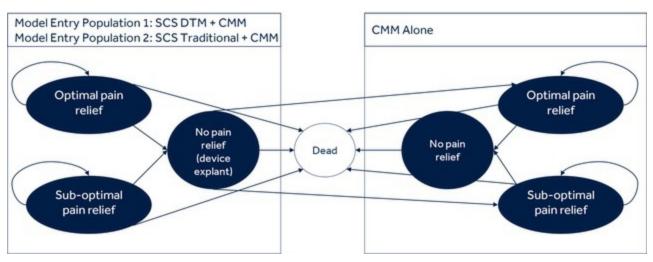
BMJ Open. 2017;7:e017585. https://doi.org/10.1136/bmjopen-2017-017585.

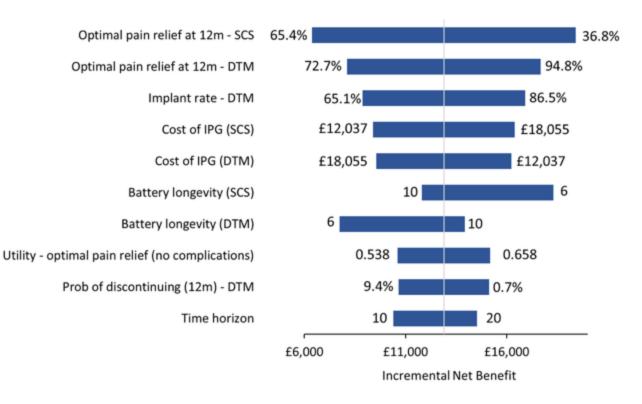
14. Office for National Statistics. National life tables-life expectancy in the UK:

2018 to 2020. 2021. Accessed January 29, 2023. https://www.ons.gov.uk/ peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/ bulletins/nationallifetablesunitedkingdom/2018to2020

15. Kapural L, Yu C, Doust MW, et al. Novel 10-kHz high-frequency therapy (HF10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: the SENZA-RCT randomized controlled trial. Anesthesiology. 2015;123:851–860. https://doi.org/10.1097/ALN.00000000 00000774.

16. Taylor RS, Bentley A, Campbell B, Murphy K. High-frequency 10 kHz spinal cord stimulation for chronic back and leg pain: cost-consequence and costeffectiveness analyses. Clin J Pain. 2020;36:852–861. https://doi.org/10.1097/AJP. 0000000000866.


17. Niyomsri S, Duarte RV, Eldabe S, et al. A systematic review of economic evaluations reporting the cost-effectiveness of spinal cord stimulation. Value Health. 2020;23:656–665. https://doi.org/10.1016/j.jval.2020.02.005.


The full-text article of this project has been accepted and is in print in the Neuromodulation: Technology at the Neural Interface.

Disclosures

Yes

Tables / Images

